If it's not what You are looking for type in the equation solver your own equation and let us solve it.
300-4.9x^2=0
a = -4.9; b = 0; c = +300;
Δ = b2-4ac
Δ = 02-4·(-4.9)·300
Δ = 5880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5880}=\sqrt{196*30}=\sqrt{196}*\sqrt{30}=14\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{30}}{2*-4.9}=\frac{0-14\sqrt{30}}{-9.8} =-\frac{14\sqrt{30}}{-9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{30}}{2*-4.9}=\frac{0+14\sqrt{30}}{-9.8} =\frac{14\sqrt{30}}{-9.8} $
| 17+20-6s=-9s-11 | | 17+20-6a=-9a | | (3x+4)/7=-3 | | 4.9x^2+8x-300=0 | | 8(×+2)=2x+16 | | 5(x+3)=3(x-2) | | 5(x−11)−3x+40=71 | | 0=-16t^2+32t+180 | | (3h+4)/7=1 | | 14d=13d-5 | | -19s=-20s−17 | | -20-13q-15q=20-20q | | 2x+8/6+8=x-4 | | 0=-16t^2+169t+46 | | -5.28-11.4c=-2.6c | | 10x-38=4x-8 | | 4x^2-10x+21=0 | | -3(9-4n)-4=8n-9(n+12) | | 6x+12=6x-40.8 | | -k+10=-2k | | 2(x)^(3/4)+4=8 | | 5(x+4)-3x=x+10+x | | (2x-2)+(×+1)+×(x+1)=(2x-9)+(×+1)(×8)+x | | -12n-16=20-8n | | 3-4y=16 | | 5.35+10.2m=0.46+10.3m+6.57 | | 4x+30=52+34 | | n1/6=5 | | 4x+30=52 | | 8+2v=v+2 | | -15j+19=-16j | | 9+9×m=9 |